Quantification of Motor-neuron Adaptation to Sustained and Intermittent Stimulation
نویسنده
چکیده
In deeply anesthetized mammals, as typified by the adult cat, there is limited evidence that the firing-rate response of spinal motor neurons to sustained stimulation usually features a progressive reduction in firing rate, termed late adaptation, that begins 1 2 s after the onset of sustained stimulation. The fullest description of late adaptation has been provided by Kernell & Monster (1982a,b) who evoked repetitive firing in spinal motor neurons of deeply anesthetized cats by the conventional procedure of an intracellular injection of a sustained depolarizing current. The main purpose of the present study was to extend on the results of their work. The first hypothesis tested was: Sustained depolarizing extracellular stimulation of motor neurons is more effective in maintaining repetitive discharge than sustained depolarizing intracellular stimulation. Investigations pioneered by Kernell & Monster (1982a,b) tested the association between late adaptation and other type (size)-related properties of motor neurons. Such analyses are within the rubric of Henneman's (1957, 1977) Size Principle, one component of which proposes that the properties of motor neurons and the muscle fibers they innervate are tightly coupled. The second hypotheSiS was proposed to continue this inquiry. It stated that: Late adaptation (during both sustained and intermittent stimulation), and other discharge-related properties of motor neurons are associated with other type (size)-related properties of these cells and their motor units. For both hypotheses, there was an emphasis on providing a quantitative description of late-adaptation. In the present study, the duration of repetitive firing in response to sustained stimulation significantly exceeded that in the Kernell & Monster (1982a,b) study. thereby providing evidence In support of the first hypothesis. For sustained stimulation, significant associations were found between the time constant of late adaptation and three neuromechanical properties of the cell's motor unit: axonal conduction velocity; twitch contraction time; and, peak tetanic force. Similarly,
منابع مشابه
PuraMatrix hydrogel enhances the expression of motor neuron progenitor marker and improves adhesion and proliferation of motor neuron-like cells
Objective(s): Cell therapy has provided clinical applications to the treatment of motor neuron diseases. The current obstacle in stem cell therapy is to direct differentiation of stem cells into neurons in the neurodegenerative disorders. Biomaterial scaffolds can improve cell differentiation and are widely used in translational medicine and tissue engineering. The aim...
متن کاملEarly neural responses to strength training.
The neural adaptations that accompany strength training have yet to be fully determined. Here we sought to address this topic by testing the idea that strength training might share similar mechanisms with some forms of motor learning. Since ballistic motor learning is accompanied by a shift in muscle twitches induced by transcranial magnetic stimulation (TMS) toward the training direction, we s...
متن کاملA comparative study on soleus H reflex parameters using vertebral column and peripheral nerve stimulation
Although low-threshold transcutaneous electrical nerve stimulation (TENS) is a modality used for control of pain, but its effect in the control of spasticity and change of excitability of a motor neuron is controversial. Therefore, this study was conducted to evaluate the effects of 15-min tripolar TENS of vertebral column and bipolar TENS of common peroneal nerve (300 µs width, 50 Hz) on synap...
متن کاملGlobal gene expression analysis using microarray to study differential vulnerability to neurodegeneration
Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...
متن کاملGlobal gene expression analysis using microarray to study differential vulnerability to neurodegeneration
Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...
متن کامل